44 research outputs found

    D=7 / D=6 Heterotic Supergravity with Gauged R-Symmetry

    Get PDF
    We construct a family of chiral anomaly-free supergravity theories in D=6 starting from D=7 supergravity with a gauged noncompact R-symmetry, employing a Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry yields a positive (de Sitter sign) D=6 scalar field potential. Classical anomaly inflow which is needed to cancel boundary-field loop anomalies requires careful consideration of the gravitational, gauge, mixed and local supersymmetry anomalies. Coupling of boundary hypermultiplets requires care with the Sp(1) gauge connection required to obtain quaternionic Kahler target manifolds in D=6. This class of gauged R-symmetry models may be of use as starting points for further compactifications to D=4 that take advantage of the positive scalar potential, such as those proposed in the scenario of supersymmetry in large extra dimensions.Comment: 43 pages, plain Latex; Clarification of discussion and references adde

    Non-singlet Baryons in Less Supersymmetric Backgrounds

    Get PDF
    We analyze the holographic description of non-singlet baryons in various backgrounds with reduced supersymmetries and/or confinement. We show that they exist in all AdS_5xY_5 backgrounds with Y_5 an Einstein manifold bearing five form flux, for a number of quarks 5N/8< k< N, independently on the supersymmetries preserved. This result still holds for gamma_i deformations. In the confining Maldacena-Nunez background non-singlet baryons also exist, although in this case the interval for the number of quarks is reduced as compared to the conformal case. We generalize these configurations to include a non-vanishing magnetic flux such that a complementary microscopical description can be given in terms of lower dimensional branes expanding into fuzzy baryons. This description is a first step towards exploring the finite 't Hooft coupling region.Comment: 36 Pages, 1 figure, Latex, v2: few minor changes, JHEP versio

    Wilson loops stability in the gauge/string correspondence

    Full text link
    We study the stability of some classical string worldsheet solutions employed for computing the potential energy between two static fundamental quarks in confining and non-confining gravity duals. We discuss the fixing of the diffeomorphism invariance of the string action, its relation with the fluctuation orientation and the interpretation of the quark mass substraction worldsheet needed for computing the potential energy in smooth (confining) gravity background. We consider various dual gravity backgrounds and show by a numerical analysis the existence of instabilities under linear fluctuations for classical string embedding solutions having positive length function derivative Lâ€Č(r0)>0L'(r_0)>0. Finally we make a brief discussion of 't Hooft loops in non-conformal backgrounds.Comment: 34 pages, 36 figures. Reference added. Final version JHEP accepte

    Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds

    Full text link
    The six-dimensional effective action of F-theory compactified on a singular elliptically fibred Calabi-Yau threefold is determined by using an M-theory lift. The low-energy data are derived by comparing a circle reduction of a general six-dimensional (1,0) gauged supergravity theory with the effective action of M-theory on the resolved Calabi-Yau threefold. The derivation includes six-dimensional tensor multiplets for which the (anti-) self-duality constraints are imposed on the level of the five-dimensional action. The vector sector of the reduced theory is encoded by a non-standard potential due to the Green-Schwarz term in six dimensions. This Green-Schwarz term also contains higher curvature couplings which are considered to establish the full map between anomaly coefficients and geometry. F-/M-theory duality is exploited by moving to the five-dimensional Coulomb branch after circle reduction and integrating out massive vector multiplets and matter hypermultiplets. The associated fermions then generate additional Chern-Simons couplings at one-loop. Further couplings involving the graviphoton are induced by quantum corrections due to excited Kaluza-Klein modes. On the M-theory side integrating out massive fields corresponds to resolving the singularities of the Calabi-Yau threefold, and yields intriguing relations between six-dimensional anomalies and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections improve

    Gluon Scattering Amplitudes in Finite Temperature Gauge/Gravity Dualities

    Full text link
    We examine the gluon scattering amplitude in N=4 super Yang-Mills at finite temperature with nonzero R-charge densities, and in Non-Commutative gauge theory at finite temperature. The gluon scattering amplitude is defined as a light-like Wilson loop which lives at the horizon of the T-dual black holes of the backgrounds we consider. We study in detail a special amplitude, which corresponds to forward scattering of a low energy gluon off a high energy one. For this kinematic configuration in the considered backgrounds, we find the corresponding minimal surface which is directly related to the gluon scattering amplitude. We find that for increasing the chemical potential or the non-commutative parameter, the on-shell action corresponding to our Wilson loop in the T-dual space decreases. For all of our solutions the length of the short side of the Wilson loop is constrained by an upper bound which depends on the temperature, the R-charge density and the non-commutative parameter. Due to this constraint, in the limit of zeroth temperature our approach breaks down since the upper bound goes to zero, while by keeping the temperature finite and letting the chemical potential or the non-commutative parameter to approach to zero the limit is smooth.Comment: 30 pages, 16 figures, minor corrections (plus improved numerical computation for the non-commutative case

    Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler

    Full text link
    We construct explicitly a new class of backgrounds in type-IIB supergravity which generalize the baryonic branch of Klebanov-Strassler. We apply a solution-generating technique that, starting from a large class of solutions of the wrapped-D5 system, yields the new solutions, and then proceed to study in detail their properties, both in the IR and in the UV. We propose a simple intuitive field theory interpretation of the rotation procedure and of the meaning of our new solutions within the Papadopoulos-Tseytlin ansatz, in particular in relation to the duality cascade in the Klebanov-Strassler solution. The presence in the field theory of different VEVs for operators of dimensions 2, 3 and 6 suggests that this is an important step towards the construction of the string dual of a genuinely multi-scale (strongly coupled) dynamical model.Comment: 37 pages, 7 figures. References added, version to appear in JHE

    A Double Sigma Model for Double Field Theory

    Full text link
    We define a sigma model with doubled target space and calculate its background field equations. These coincide with generalised metric equation of motion of double field theory, thus the double field theory is the effective field theory for the sigma model.Comment: 26 pages, v1: 37 pages, v2: references added, v3: updated to match published version - background and detail of calculations substantially condensed, motivation expanded, refs added, results unchange

    Global aspects of the space of 6D N = 1 supergravities

    Get PDF
    We perform a global analysis of the space of consistent 6D quantum gravity theories with N = 1 supersymmetry, including models with multiple tensor multiplets. We prove that for theories with fewer than T = 9 tensor multiplets, a finite number of distinct gauge groups and matter content are possible. We find infinite families of field combinations satisfying anomaly cancellation and admitting physical gauge kinetic terms for T > 8. We find an integral lattice associated with each apparently-consistent supergravity theory; this lattice is determined by the form of the anomaly polynomial. For models which can be realized in F-theory, this anomaly lattice is related to the intersection form on the base of the F-theory elliptic fibration. The condition that a supergravity model have an F-theory realization imposes constraints which can be expressed in terms of this lattice. The analysis of models which satisfy known low-energy consistency conditions and yet violate F-theory constraints suggests possible novel constraints on low-energy supergravity theories.Comment: 41 pages, 1 figur

    Probing strongly coupled anisotropic plasma

    Full text link
    We calculate the static potential, the drag force and the jet quenching parameter in strongly coupled anisotropic N=4 super Yang-Mills plasma. We find that the jet quenching is in general enhanced in presence of anisotropy compared to the isotropic case and that its value depends strongly on the direction of the moving quark and the direction along which the momentum broadening occurs. The jet quenching is strongly enhanced for a quark moving along the anisotropic direction and momentum broadening happens along the transverse one. The parameter gets lower for a quark moving along the transverse direction and the momentum broadening considered along the anisotropic one. Finally, a weaker enhancement is observed when the quark moves in the transverse plane and the broadening occurs on the same plane. The drag force for quark motion parallel to the anisotropy is always enhanced. For motion in the transverse space the drag force is enhanced compared to the isotropic case only for quarks having velocity above a critical value. Below this critical value the force is decreased. Moreover, the drag force along the anisotropic direction is always stronger than the force in the transverse space. The diffusion time follows exactly the inverse relations of the drag forces. The static potential is decreased and stronger decrease observed for quark-antiquark pair aligned along the anisotropic direction than the transverse one. We finally comment on our results and elaborate on their similarities and differences with the weakly coupled plasmas.Comment: 1+44 pages, 18 Figures; Added results on static force; Added references; version published in JHE

    Generalized Geometry and M theory

    Full text link
    We reformulate the Hamiltonian form of bosonic eleven dimensional supergravity in terms of an object that unifies the three-form and the metric. For the case of four spatial dimensions, the duality group is manifest and the metric and C-field are on an equal footing even though no dimensional reduction is required for our results to hold. One may also describe our results using the generalized geometry that emerges from membrane duality. The relationship between the twisted Courant algebra and the gauge symmetries of eleven dimensional supergravity are described in detail.Comment: 29 pages of Latex, v2 References added, typos fixed, v3 corrected kinetic term and references adde
    corecore